

Trutek Fasteners Polska Sp. z o.o.

Al. Krakowska 38, Janki 05-090 Raszyn NIP: PL 5342256188 REGON: 015722173

)ecl	aration of Performance	(((Revision No: Revision carried out	1 Ben Beardo						
r: TD	0A/01/20230426/1488-CPR-1028/W		by:							
	E	TA-22/0153	Revision date:	26.04.202						
1.	Unique identyfiaction code of product-type:									
	TDA Drop in anchor									
2.	Indended use/es:									
	Mechanical fasteners to use in non-cracked concrete	sizes M12. M12D a	and M16							
3.	Manufacturer:									
	Name: Trutek Fasteners Polska Sp. z o.o.									
	Address:	Al. Krakowska 38,								
		05-090 Raszyn, Po	olska							
4.	System/s of AVCP:									
	System:	1								
5.	European Assessment Document:									
	In accordance with regulation (EU) No 305/2011 on t 330232-01-0601 "Metal fasteners for use in concrete		an Assessment Docume	nt EAD						
	European Technical Assessment	ETA-22/0153 of 9	ETA-22/0153 of 9th of September 2022							
	Issued by:	ITB - Building Res	earch Institute in Warsa	aw						
6 .	Notyfied body/ies:									
	Name:		Certification Department of ITB - Building Research Institute in Warsaw							
	Notified body/ies No:	1488								
	No of Certificate of Constancy of Performance: 1488-CPR-1028/W									
7.	Declared performance/es:									
	Mechanical resistance and stability (BWR 1)									
	Essential chracteristic	Performance								
	Characteristic tension load values	Annex C1								
	Characteristic shear load values	Annex C2								
	Displacements under tension and shear load values Annex C3									
	Safety in case of fire (BWR 2)									
	Essential chracteristic	Performance								
	Reaction to fire	Anchor satisfy requirements for Class A1								
	Resistance to fire		Annex C4							

The performance of the product identified above is in conformity with the set of declared performance/es. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Janki, 24th of April 2023 Signed for and on behalf of the manufacturer by:

UH

Ben Beardon Operations Director TRUTEK FASTENERS POLSKA Sp. z c.c. Al. Krakowska 38, Janki 05-090 Raszyn NIP: 5342256188 REGON: 015722173

Page 6 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Page 7 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Page 8 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchorages subject to:

Static and quasi-static loads.

Anchorages with requirements related to resistance to fire

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non-cracked concrete: sizes from M12, M12D and M16.

Temperature range:

- The covered temperature range of the anchorage base concrete during the working life is within the range -40 °C to +80 °C

Use conditions (environmental conditions):

- Dry internal conditions.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check before placing the anchor to ensure that the strength class of the concrete, in which the anchor is to be placed, is identical with the values which the characteristic loads apply.
- Check of concrete being well compacted, e.g. without significant voids.
- Edge distances and spacings not less than the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Hole shall be clean from drilling dust.
- Anchor installation such that the effective anchorage depth is complied with: the compliance is ensured if the thickness of the fixture is not larger than the maximum values given in Annex B2.
- Anchor expansion by impact on the wedge of the anchor; the anchor is properly set if the wedge is fully dropped in.
- Application of the torque moment given in Annex B2 using a calibrated torque wrench.

Proposed design method:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete works.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads and anchorages with requirements related to resistance to fire are designed in accordance with EN 1992-4:.

TDA Drop In anchor	Annex B1
Intended use – Specification	of European Technical Assessment ETA-22/0153

e-mail: info@trutek.com.pl / www.trutek.com.pl tel.+48 22 701 93 24-25, fax.+48 22 100 58 82

Page 9 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

e-mail: info@trutek.com.pl / www.trutek.com.pl tel.+48 22 701 93 24-25, fax.+48 22 100 58 82

TECHNIKI ZAMOCOWAŃ W BUDOWNICTWIE

e-mail: info@trutek.com.pl / www.trutek.com.pl tel.+48 22 701 93 24-25, fax.+48 22 100 58 82

TECHNIKI ZAMOCOWAŃ W BUDOWNICTWIE

Page 11 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Table C1: Characteristic tension load values

Amahan				TDA and TDA L		
Anchor		M12	M12D	M16		
Steel failure						
Steel failure with th	readed rod grade 4.8					
Characteristic resist	ance	N _{Rk,s}	[kN]	33,7	33,7	62,8
Partial safety factor		γ _{Ms} ¹⁾	[-]		1,5	
Steel failure with th	readed rod grade 5.8					
Characteristic resist	ance	N _{Rk,s}	[kN]	42,2	42,2	78,5
Partial safety factor		γ_{Ms} ¹⁾	[-]		1,5	
Steel failure with th	readed rod grade 6.8		· · ·			
Characteristic resistance		N _{Rk,s}	[kN]	50,6	50,6	94,2
Partial safety factor		γ_{Ms} ¹⁾	[-]	1,5		
Steel failure with th	readed rod grade 8.8					
Characteristic resist	ance	N _{Rk,s}	[kN]	67,4	67,4	125,6
Partial safety factor		γ_{Ms} ¹⁾	[-]		1,5	
Pull-out failure						
Characteristic resistance in uncracked concrete C20/25		N _{Rk,p}	[kN]	2)	2)	2)
Installation factor		γ_{inst}	[-]	1,0	1,0	1,2
	concrete C30/37		[-]	1,22	1,22	1,22
Increasing factor	concrete C40/50	ψ_c	[-]	1,41	1,41	1,41
	concrete C50/60		[-]	1,55	1,55	1,55

in absence of other national regulations
pull-out failure mode is not decisive

Amahan		TDA and TDA L					
Anchor		M12	M12D	M16			
Concrete cone failu	re and splitting failu	re					
Effective anchorage	h _{ef}	[mm]	50	50	65		
Factor for uncracked	k _{ucr,N}	[-]	11,0	11,0	11,0		
Installation factor		γinst	[-]	1,0	1,0	1,2	
Characteristic resistance to splitting		N ⁰ _{Rk,sp}	[kN]	1)	1)	1)	
Characteristic	concrete cone failure	S _{cr,N}	[mm]	300	300	300	
spacing	splitting failure	S _{cr,sp}	[mm]				
Characteristic edge	concrete cone failure	c _{cr,N}	[mm]	150	150	150	
distance	splitting failure		[mm]				

¹⁾ splitting failure mode is not decisive

TDA Drop In anchor

Characteristic resistance to tension load in uncracked concrete

Annex C1 of European Technical Assessment ETA-22/0153

Page 12 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Anchor				TDA and TDA L			
			M12	M12D	M16		
Steel failure without lever arm							
Steel failure with threaded rod grade 4.8							
Characteristic resistance	N _{Rk,s}	[kN]	16,9	16,9	31,4		
Factor of ductility	k7	[-]		0,8			
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Steel failure with threaded rod grade 5.8							
Characteristic resistance	N _{Rk,s}	[kN]	21,1	21,1	39,3		
Factor of ductility	k7	[-]		0,8			
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Steel failure with threaded rod grade 6.8							
Characteristic resistance	N _{Rk,s}	[kN]	25,3	25,3	47,1		
Factor of ductility	k 7	[-]		0,8			
Partial safety factor	γ_{Ms} ¹⁾	[-]	1,25				
Steel failure with threaded rod grade 8.8							
Characteristic resistance	N _{Rk,s}	[kN]	33,7	33,7	62,8		
Factor of ductility	k ₇	[-]		0,8			
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Steel failure with lever arm							
Characteristic bending moment 4.8	M ⁰ _{Rk,s}	[mm]	52,4	52,4	133,3		
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Characteristic bending moment 5.8	M ⁰ _{Rk,s}	[mm]	65,6	65,6	166,6		
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Characteristic bending moment 6.8	M ⁰ _{Rk,s}	[mm]	78,7	78,7	199,9		
Partial safety factor	γ _{Ms} ¹⁾	[-]		1,25			
Characteristic bending moment 8.8	M ⁰ _{Rk,s}	[mm]	104,9	104,9	266,6		
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,25			
Resistance to pry-out failure							
Pry-out factor	k_8	[-]	1,0	1,0	2,0		
Partial safety factor	γ_{Ms} ¹⁾	[-]		1,5			
⁾ in absence of other national regulation	ons						

	Anahov									
Anchor										
Resistance to concrete edge failure										
d _{nom}	[mm]	15	16	20						
$l_{\rm f}$	[mm]	50	50	65						
$\gamma_{Me}^{1)}$	[-]	1,5								
h _{min}	[mm]	100	100	130						
c _{min}	[mm]	68	68	88						
Smin	[mm]	68 68 88								
	$\begin{array}{c c} l_{f} \\ \hline \gamma_{Mc} {}^{1)} \\ h_{min} \\ c_{min} \end{array}$	$\begin{tabular}{ c c c c } \hline $I_{\rm f}$ & [mm] \\ \hline $\gamma_{\rm Mc}1 & [-] \\ \hline $h_{\rm min}$ & [mm] \\ \hline $c_{\rm min}$ & [mm] \\ \hline $s_{\rm min}$ & [mm] \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						

¹⁾ in absence of other national regulations

TDA Drop In anchor

Annex C2 of European Technical Assessment ETA-22/0153

Characteristic resistance to shear load in uncracked concrete

Page 13 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

Table C3: Displacements under tension	on and she	ar load val	ues							
Anchor				TDA and TDA L						
Anchor	M12	M12D	M16							
Displacements under static and quasi-static loading										
Tension and shear load in uncracked concrete C20/25 to C50/60										
Tension load and shear load	N _{Rk,s}	[kN]	12,7	12,7	21,1					
Short term tension displacement	δ_{No}	[mm]	1,91	2,35	2,09					
Long term tension displacement	δ_{N^∞}	[mm]	2,70	3,13	2,87					
Short term shear displacement	δνο	[mm]	1,91	2,35	2,09					
Long term shear displacement	$\delta_{V^{\infty}}$	[mm]	2,87	3,52	3,13					

TDA Drop In anchor

Displacements under tension and shear loads

Annex C3 of European Technical Assessment ETA-22/0153

, NIP: PL 5342256188 REGON: 015722173

Page 14 of 14 of European Technical Assessment no. ETA-22/0153, issued on 2022-09-09

A				TDA and TDA L				
Anchor				M12	M12D	M16		
Steel failure								
	R30	N _{Rk,s,fi}	[kN]	1,7	1,7	3,1		
Characteristic	R60	N _{Rk,s,fi}	[kN]	1,3	1,3	2,4		
resistance	R90	N _{Rk,s,fi}	[kN]	1,1	1,1	2,0		
	R120	N _{Rk,s,fi}	[kN]	0,8	0,8	1,6		
Pull-out failure								
	R30	N _{Rk,p,fi}	[kN]	4,8	4,8	9,5		
Characteristic	R60	N _{Rk,p,fi}	[kN]	4,8	4,8	9,5		
resistance	R90	N _{Rk,p,fi}	[kN]	4,8	4,8	9,5		
	R120	N _{Rk,p,fi}	[kN]	3,8	3,8	7,6		
Concrete cone fai	ilure							
	R30	N _{Rk,c,fi}	[kN]	4,5	4,5	8,6		
Characteristic	R60	N _{Rk,c,fi}	[kN]	4,5	4,5	8,6		
resistance	R90	N _{Rk,c,fi}	[kN]	4,5	4,5	8,6		
	R120	N _{Rk,c,fi}	[kN]	3,6	3,6	8,9		
Spacing		S _{cr,N,fi}	[mm]	200	200	260		
Edge distance		C _{cr,N,fi}	[mm]	100	100	130		

Table C5: Characteristic resistance for shear loads under fire exposure in uncracked concrete C20/25 to C50/60

Anahan			TDA and TDA L								
Anchor				M12	M12D	M16					
Steel failure without lever arm											
	R30	$V_{Rk,s,\mathrm{fi}}$	[kN]	1,7	1,7	3,1					
Characteristic resistance	R60	V _{Rk,s,fi}	[kN]	1,3	1,3	2,4					
Characteristic resistance	R90	V _{Rk,s,fi}	[kN]	1,1	1,1	2,0					
	R120	$V_{Rk,s,fi}$	[kN]	0,8	0,8	1,6					
Steel failure with lever ar	n										
	R30	$M^0_{Rk,s,\mathrm{fi}}$	[Nm]	3,9	3,9	9,3					
Characteristic bending	R60	$M^0{}_{Rk,s,\mathrm{fi}}$	[Nm]	2,9	2,9	7,0					
resistance	R90	$M^0_{\ Rk,s,fi}$	[Nm]	2,5	2,5	6,0					
	R120	$M^0_{Rk,s,\mathrm{fi}}$	[Nm]	1,9	1,9	4,6					

TDA Drop In anchor

Characteristic values under fire exposure

Annex C4 of European Technical Assessment ETA-22/0153