

European Technical Assessment

ETA 25/0663 of 29/10/2025

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product

TAB G TAB Z

Product family to which the construction

Product area code: 33

product belongs

Concrete screw for use in uncracked concrete

Manufacturer

eota@tzus.cz

Trutek Fasteners Polska Sp. z o.o. ul. Wojska Polskiego 3

39-300 Mielec, Poland

Manufacturing plant

Production plant no.1

This European Technical Assessment contains

9 pages including 7 Annexes which form an

integral part of this assessment

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

EAD 330232-01-0601

Mechanical fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The TAB G and TAB Z is concrete screw of sizes 6, 8, 10, 12 and 14 mm, made of carbon steel for use only in uncracked concrete. TAB G is mechanically galvanized and TAB Z is zinc plated.

The anchor is screwed into a drilled cylindrical hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The installed anchor is shown in Annex 1.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	No performance assessed

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹, the system 1 of assessment verification of constancy of performance (see Annex V to the Regulation (EU) No 305/2011) apply.

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

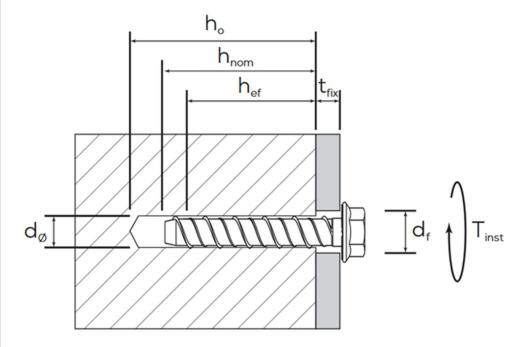
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Technical and Test Institute for Construction Prague.

Issued in Prague on 29.10.2025

Ву

lng. Jiří Studnička, Ph.D.

Head of the Technical Assessment Body


TECHNICAL ASSESSMENT OF THE PROPERTY OF THE PR

Official Journal of the European Communities L 254 of 08.10.1996

TAB G, TAB Z

TAB G, TAB Z - Installed anchor

 d_o = nominal drill hole diameter h_o = minimum drill hole depth h_{ef} = effective embedment depth h_{min} = minimum concrete thickness t_{fix} = thickness of the fixture

TAB G and TAB Z	
Product description Installed conditions	Annex A 1

TAB G, TAB Z – components

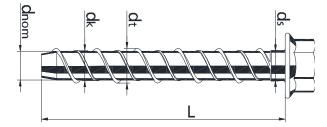


Table A1 Dimensions and materials

Anchor size			6	8	10	12	14	
Longth of anchor	L_{min}	mm	48	53	73	90	95	
Length of anchor	L_{max}	mm	100	150	175	200	200	
Nominal hole diameter	d_0	mm	6,00	8,00	10,00	12,00	14,00	
Nominal core diameter	d_{nom}	mm	5,40	7,40	9,40	11,40	13,40	
Shaft diameter	ds	mm	5,70	7,70	9,70	11,60	13,60	
Higher thread diameter	dt	mm	7,70	9,70	11,70	13,80	15,80	
Lower thread diameter	d_k	mm	6,00	8,00	10,00	12,00	14,00	
Thread pitch	ht	mm	7,50	11,00	14,00	17,00	20,00	
Material		Hardened carbon steel, A₅ ≤ 8% (≤350HV)						
Coating			electroplated posited acc.					

Table A2 Marking

Table Az Markii			
Head Type	Marking		
Hexagonal	TAB FG	TAB FG	
Flange Head	TAB FZ	8x75	
Hexagonal	TAB HG	TAB HG	
Head	TAB HZ	8x75	
Countersunk	TAB CG	TAB CZ	
Head	TAB CZ	8x75	
Pan Head	TAB PG TAB PZ	TAB PZ 8x75	

TAB G and TAB Z	
Product description	Annex A 2
Dimensions and materials	
Marking	

Specifications of intended use

Anchorages subject to:

• Static and quasi-static load.

Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete without fibres of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013+A2:2021

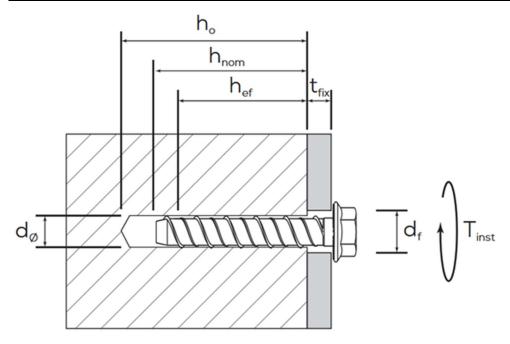
Use conditions (Environmental conditions)

• Structures subject to dry internal conditions.

Design:

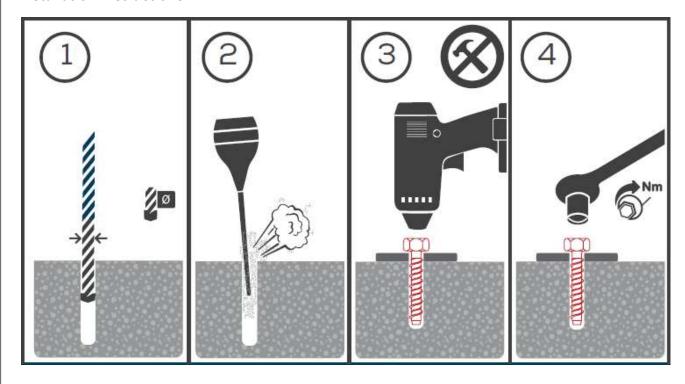
- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance.
- In case of aborted drill hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

TAB G and TAB Z	
Intended use Specifications	Annex B 1

Table B1 Installation parameters – Re	Table B1 Installation parameters – Reduced embedment depth									
Size			6	8	10	12	14			
Reduced embedment depth										
Nominal drill hole diameter	do	[mm]	6	8	10	12	14			
Drill hole depth	h _o	[mm]	40	50	60	70	80			
Overall embedment depth	h_{nom}	[mm]	30	40	50	55	60			
Effective embedment depth	h_{ef}	[mm]	18	25	31	32	35			
Minimum concrete thickness	h_{min}	[mm]	100	100	100	110	120			
Minimum spacing	S _{min}	[mm]	50	50	60	70	80			
Minimum edge distance	C _{min}	[mm]	50	50	100	100	100			
Required setting torque	T_{inst}	[Nm]	10	20	30	50	60			
Impact wrench max	T_{inst}	[Nm]	200	250	350	450	600			


Table B2 Installation parameters – Standard embedment depth

Size			6	8	10	12	14
Nominal drill hole diameter	d _o	[mm]	6	8	10	12	14
Drill hole depth	h _o	[mm]	65	75	85	100	110
Overall embedment depth	h _{nom}	[mm]	55	65	75	90	105
Effective embedment depth	h _{ef}	[mm]	48	50	56	67	80
Minimum concrete thickness	h _{min}	[mm]	110	130	150	180	210
Minimum spacing	S _{min}	[mm]	90	90	90	90	110
Minimum edge distance	C _{min}	[mm]	90	90	160	160	170
Required setting torque	T _{inst}	[Nm]	10	20	30	50	60
Impact wrench max	T_{inst}	[Nm]	200	250	350	450	600

TAB G and TAB Z	
Intended use Installation parameters	Annex B 2

Installation instructions

TAB G and TAB Z	
Intended use Installation instructions	Annex B 2

Table C1 Characterist	tic resistan	ce under tens	ion loa		^								4
Size				6		8		10			2		4
Nominal embedment	depth	h _{nom}	[mm]	30	55	40	65	50	75	55	90	60	105
Steel failure													
Characteristic resistar	nce	$N_{Rk,}$	[kN]	17	7,4	31	1,7	50	0,3	71	1,9	95	5,9
Partial safety factor		γ_{Ms}^{-1}	[-]					1,	81				
Pull-out failure													
Characteristic resistance	е	NI	[kN]	2.5	13,0	6.0	17.0	0 0	20.0	0 5	26.0	10.0	25.0
in uncracked concrete (C20/25	$N_{Rk,}$	[KIN]	3,5	13,0	0,0	17,0	0,0	20,0	0,5	20,0	10,0	35,0
Robustness		[-]	1	,0		1,			,2				
		C30/37		1,	11	1,05		1,03		1,08		1,09	
Increasing factor		C40/50 ψ _c	[-]	1,	20	1,	09	1,	05	1,	15	1,	16
for uncracked concrete		C50/60		1,	26	1,12		1,	1,06		1,19		20
Concrete cone and sp	litting failu	re	•	•		•		•		•		•	
Factor for concrete con	e failure	l.	F 3					4.	1.0				
for uncracked concrete		$k_{ucr,N}$	[-]					ı	1,0				
Robustness		γinst	[-]				1	,2				1	,0
Effective embedment	depth	h _{ef}	[mm]	18	43	25	50	31	56	32	67	35	80
Concrete cone failure Edge distance		ance c _{cr,N}	[mm]					1,5	• h _{ef}				
Concrete cone failure	Spacing	S _{cr,N}			3 • h _{ef}								
Condittion on the illumn	Edge dista		T	90	165	120	195	150	225	165	260	180	315
Splitting failure	Spacing	S _{cr.si}	[mm]	180	330	240	390	300	450	330	520	360	630

¹⁾ in absence of other national regulations

Table C2 Displacement under tension load

Size			(3	3	3	1	0	1	2	1	4
Nominal embedment depth	h _{nom}	[mm]	30	55	40	65	50	75	55	90	60	105
Tension load in uncracked concrete	N	[kN]	1,7	6,2	2,9	8,1	3,8	9,5	4,0	12,4	4,8	16,7
Displacement	δ_{N0}	[mm]	0,6	1,3	0,7	1,3	0,7	1,4	0,7	2,0	0,7	2,2
	δ_{N^∞}	[mm]	0,9	1,7	1,0	1,7	1,0	1,8	1,0	2,4	1,0	2,6

TAB G and TAB Z	
Performances	Annex C 1
Characteristic resistance under tension load	
Displacement under tension load	

Table C3	Characteristic	resistance	under	shear load	
I abic oo	On landotter is the	1 Colotal loc	unuci	oncai idaa	

Size			6	3	8	3	1	0	1	2	1	4
Nominal embedment depth	h_{nom}	[mm]	30	55	40	65	50	75	55	90	60	105
Steel failure without lever arm												
Characteristic resistance	$V^0_{Rk,s}$	[kN]	6,	,1	15	5,4	17	',5	22	2,8	42	2,2
Ductility factor	k ₇	[-]	0,8									
Partial safety factor	γ _{Ms} 1)	[-]	1,51									

Steel failure with lever arm							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	15	37	73	125	193
Partial safety factor	$\gamma_{Ms}^{1)}$	[-]			1,51		

Concrete pry-out failure												
Factor	k ₈	[-]	1,0	1,0	1,0	1,0	1,0	1,0	1,0	2,0	1,0	2,0

Concrete edge failure												
Effective length of anchor	ℓ_{f}	[mm]	18	43	25	50	31	56	32	67	35	80
Anchor diameter	d_{nom}	[mm]	(3	8	3	1	0	1	2	1	4

¹⁾ in absence of other national regulations

Table C4 – Displacement under shear load

Size			6	8	10	12	14
Shear load in uncracked concrete	V	[kN]	3,5	8,8	10,0	13,0	24,1
Displacement	$\delta_{ m V0}$	[mm]	1,3	1,4	2,0	2,0	2,0
	δ_{V^∞}	[mm]	2,0	2,1	3,0	3,0	3,0

TAB G and TAB Z	
Performances	Annex C 2
Characteristic resistance under shear load	
Displacement under shear load	